SUPERSYMMETRIC FIELD THEORY WITH BENIGN GHOSTS

Nantes, 18 décembre 2013

based on A.S., arXiv:1306.6066 [hep-th]

MOTIVATION:

Problems with causality in quantum and classical gravity.

Dream solution: [A.S., 2005]

• our Universe as a soap film in a flat higher dimensional bulk. The TOE is a field theory in this bulk.

• To be renormalizable, it should involve higher derivatives

DANGER: the ghosts

• GHOSTS = instability (rather absence) of

vacuum

• inherent for higher-derivative theories.

Conventional system

$$E = \frac{\dot{q}^2}{2} + V(q)$$

can have a classical and/or quantum bottom

• Consider Pais-Uhlenbeck oscillator.

$$L = \frac{1}{2}(\ddot{q} + \Omega^2 q)^2 \; .$$

Then

$$E = \ddot{q}(\ddot{q} + \Omega^2 q) - \dot{q}(q^{(3)} + \Omega^2 \dot{q}) - \frac{1}{2}(\ddot{q} + \Omega^2 q)^2$$

can be as negative as one wishes.

• Common lore: negative residues in propagators break unitarity.

NOT TRUE!!

• No problem in free theories

• Interactions may lead to collapse and breaking of unitarity. Like falling into the center in the attractive potential $\sim 1/r^2$.

• If quantum theory is sick, so is its classical counterpart. If classical theory is benign, so is its quantum counterpart

Benign nonlinear SQM system with ghosts [D. Robert + A.S., 2006]

$$S = \int dt dx d\bar{\theta} d\theta \left[\frac{i}{2} \bar{\mathcal{D}} \Phi \frac{d}{dt} \mathcal{D} \Phi + V(\Phi) \right] ,$$

with the real (0+1)-dimensional superfield

$$\Phi = \phi + \theta \bar{\psi} + \psi \bar{\theta} + D \theta \bar{\theta}$$

• An extra time derivative.

The Hamiltonian

 $H = pP - DV'(\phi) + \text{fermion term}$

is not positive definite.

Integrals of motion:

- 1. $E \equiv H$ 2. $N = \frac{1}{2}\dot{\phi}^2 - V(\phi)$
- Exactly solvable.
- Take

$$V(\Phi) = -\frac{\omega^2 \Phi^2}{2} - \frac{\lambda \Phi^4}{4},$$

• Explicit solutions

$$\phi(t) = \phi_0 \operatorname{cn}[\Omega t | m]$$

with

$$\alpha = \frac{\omega^4}{\lambda N}, \quad \Omega = [\lambda N(4+\alpha)]^{1/4}, \quad m = \frac{1}{2} \left[1 - \sqrt{\frac{\alpha}{4+\alpha}} \right],$$
$$\phi_0 = \left(\frac{N}{\lambda}\right)^{1/4} \sqrt{\sqrt{4+\alpha} - \sqrt{\alpha}}$$

$$D(t) \propto \dot{\phi}(t) \int^t \frac{dt'}{\dot{\phi}^2(t')}$$

- $\phi(t)$ is bounded.
- D(t) grows linearly.

D(t)

• Quantum problem is also exactly solvable. Continuous spectrum, $E \in [-\infty, -\omega] \cup [\omega, \infty] +$ infinitely many normalizated states with E = 0.

- Explicit expressions for wave functions exist.
- Evolution operator is unitary.

(1+1) field theory.

•. Let Φ depend on t and x. Choose

$$S = \int dt dx d\bar{\theta} d\theta \left[-2i\mathcal{D}\Phi \partial_{+}\mathcal{D}\Phi + V(\Phi) \right] ,$$

where $\partial_{\pm} = (\partial_t \pm \partial_x)/2$ and

$$\mathcal{D} = \frac{\partial}{\partial \theta} + i\theta \partial_{-}, \qquad \quad \bar{\mathcal{D}} = \frac{\partial}{\partial \bar{\theta}} - i\bar{\theta}\partial_{+}$$

Bosonic Lagrangian

 $\mathcal{L}_B = \partial_\mu \phi \partial_\mu D + D V'(\phi)$

Equations of motion

$$\Box \phi + \omega^2 \phi + \lambda \phi^3 = 0$$

$$\Box D + D(\omega^2 + 3\lambda \phi^2) = 0.$$

Two integrals of motion:

$$E = \int dx \left[\dot{\phi} \dot{D} + \phi' D' + D\phi(\omega^2 + \lambda \phi^2) \right]$$

(positive or negative)

$$N = \int dx \left[\frac{1}{2} \left(\dot{\phi}^2 + (\phi')^2 \right) + \frac{\omega^2 \phi^2}{2} + \frac{\lambda \phi^4}{4} \right]$$

(positive definite)

• Stochasticity. Solved numerically. Initial conditions

$$\begin{aligned} \phi(x,t) &= C e^{-x^2}, & \text{with} \quad C = 1, 3, 5 \\ D(x,t) &= \cos \pi x / L, & L = 10 & \text{being the length of the box} \end{aligned}$$

Figure 1: Dispersion $d = \sqrt{\langle D^2 \rangle_x}$ as a function of time for different values of C.

IMPLICATIONS FOR INFLATION ?

• Homogeneous classical field needed.

• Let $\phi(t)$ be homogeneous. Then different Fourier modes of D(x, t) decouple.

ONLY ZERO MODE GROWS !

• D(x, t) becomes more and more homogeneous.