

December 15-16, IPN Orsay

Octet baryon masses in covariant baryon chiral perturbation theory

Xiu-Lei Ren

School of Physics and Nuclear Energy Engineering, Beihang University Institut de Physique Nucléaire, IN2P3-CNRS and Université Paris-Sud

Collaborators:

Li-Sheng Geng (BUAA), Jie Meng (PKU & BUAA),

J. Martin-Camalich (U.C. San Diego), and H. Toki (RCNP)

OUTLINE

Introduction

- Theoretical Framework
- Numerical Details
- Results and Discussion

Summary

Origin of masses

Current quark masses --- Explained

- Standard Model \rightarrow Higgs Mechanism
- LHC @ CERN → Higgs particle
 ATLAS Collaboration, PLB716(2012)1
 CMS Collaboration, PLB716(2012)30
 Nobel Prize 2013

Light hadron masses --- Complicated

 $M_p (938 \text{MeV}) \gg m_u + m_u + m_d (12 \text{MeV})$

- Current quark masses (1-3%)
- Non-perturbative strong interaction (>95%)
 - Lattice QCD
 - Chiral Perturbation Theory
 - Other Models

Octet baryon masses in LQCD

\square $N_f = 2 + 1$ lattice calculation

- BMW, S. Dürr et al., Science 322 (2008) 1224
- PACS-CS, S. Aoki et al., PRD 79 (2009) 034503
- LHPC, A. Walker-Loud et al., PRD 79 (2009) 054502
- HSC, H.-W. Lin et al., PRD 79 (2009) 034502
- UKQCD, W. Bietenholz et al., PRD 84 (2011) 054509
- NPLQCD, S. Beane et al., PRD 84 (2011) 014507

Test the consistency --- crucial

- Lattice simulations:
 - different fermion/gauge actions
 - different quark masses
 - different lattice volumes ($V = L^3$)
 - different lattice spacings (a)
- In continuum:

should lead to the same theory --- QCD

LQCD supplemented BChPT

Cost of LQCD

$$\mathbf{Cost} \propto \left(rac{L}{a}
ight)^4 rac{1}{a} rac{1}{m_{u/d}a}.$$

Limitation of LQCD

Input of LQCD	Simulation	Physical World
Light quark masses $m_{u/d}$	$\sim 10 \; {\rm MeV}$	3-5 MeV
Lattice box size L	$2-5~{ m fm}$	Infinite space time
Lattice spacing a	$a\sim 0.1 {\rm fm}$	Continuum

In order to obtain the physical values

Baryon Chiral Perturbation Theory (BChPT) is a powerful tool to perform **the multi-extrapolation** for LQCD simulations.

X.-L. Ren (Beihang U. & IPN)

EOMS-N³LO

Baryon Chiral Perturbation Theory

□ Effective Field Theory of low-energy QCD

- Degrees of freedom
 - ✓ Pseudoscalar mesons, ✓ Baryons (Octet and Decuplet)
- Chiral symmetry $SU(3)_L \times SU(3)_R$
- Explicit and spontaneous symmetry breaking

Solving the Power Counting Breaking problem

Non-Relativistic	Relativistic		
Heavy-Baryon ChPT E.E. Jenkins et al., PLB(1991)	Infrared BChPT T. Becher et al., EPJC(1999)	Extended-on-mass-shell (EOMS) J. Gegelia et al., PRD(1999), T. Fuchs et al., PRD(2003)	
Baryon as static source	H = I + R	PCB terms subtracted	
Strict power-counting	$\int_0^1 \cdots = \int_0^\infty \cdots - \int_1^\infty \cdots$	Redefinition of the LECs	
breaks analyticity	breaks analyticity	satisfies analyticity	
converges slowly	converges slowly	converges relatively fast	

Octet baryon masses in BChPT

Up to NNLO

- Heavy Baryon ChPT
 - Is failed to describe the lattice data PACS-CS,PRD(2009), LHPC,PRD(2009)
- EOMS-BChPT
 - Improved description of the PACS-CS and LHPC data J. Martin-Camalich et al., PRD(2010)
 - Finite-volume effects in LQCD simulations are very important L.S. Geng et al., PRD(2011)
- Finite-range regularization + HBChPT
 mice description of the PACS-CS and LHPC data R.D. Young et al., PRD(2010)

□ Up to N³LO --- Few calculations

Many low-energy constants (LECs) need to be fixed

Partial summation BChPT

Inice description of the BMW, PACS, LHPC and UKQCD data A. Smeke et al., PRD(2012), M.F.M. Lutz et al., PRD(2013)

Infrared BChPT

IN nice description of UKQCD data P.C. Bruns et al., PRD(2013)

X.-L. Ren (Beihang U. & IPN)

In this work

Calculate the octet baryon masses in the EOMS BChPT up to $N^{3}LO$ to systematically study the LQCD data

- Take into account finite volume corrections (FVCs) self-consistently
- Perform a simultaneous fit of all the N_f = 2 + 1 lattice results
 Fix LECs and perform chiral extrapolation
 Test the consistency of different LQCD data
- Perform the continuum extrapolation of LQCD up to O(a²)
 Evaluate the finite lattice spacing discretization effects
- Accurately predict the sigma terms of octet baryon

Theoretical Framework

 \blacksquare Effective Lagrangians up to N³LO

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\phi}^{(2)} + \mathcal{L}_{\phi}^{(4)} + \mathcal{L}_{\phi B}^{(1)} + \mathcal{L}_{\phi B}^{(2)} + \mathcal{L}_{\phi B}^{(3)} + \mathcal{L}_{\phi B}^{(4)} \\ &= \frac{F_{\phi}^{2}}{4} \langle D_{\mu} U (D_{\mu} U)^{\dagger} \rangle + \frac{F_{\phi}^{2}}{4} \langle \chi U^{\dagger} + U \chi^{\dagger} \rangle + \sum_{i=4}^{8} L_{i} \hat{\mathcal{O}}_{\phi}^{(4)} \\ &+ \langle \bar{B} (i \not{D} - M_{0}) B \rangle + \frac{D/F}{2} \langle \bar{B} \gamma^{\mu} \gamma_{5} [u_{\mu}, B]_{\pm} \rangle \\ &+ b_{0} \langle \chi_{+} \rangle \langle B \bar{B} \rangle + b_{D/F} \langle \bar{B} [\chi_{+}, B]_{\pm} \rangle + \sum_{j=1}^{8} b_{j} \hat{\mathcal{O}}_{\phi B}^{(2)} + \sum_{k=1}^{7} d_{k} \hat{\mathcal{O}}_{\phi B}^{(4)}. \end{aligned}$$

- The meson Lagrangians. Gasser, NPB(1985)
 - LECs from $\mathcal{L}_{\phi}^{(2)}, \ \mathcal{L}_{\phi}^{(4)}: F_{\phi}, L_{i}, \ i \in (4,5,6,7,8)$
- The meson-baryon Lagrangians. Borasoy, A.P.(1996), Oller, JHEP (2006)
 - LECs from $\mathcal{L}_{\phi B}^{(1)}$: m_0 , D, F
 - LECs from $\mathcal{L}_{\phi B}^{(2)}$: $b_0, b_D, b_F, b_j, \ j \in (1, \cdots, 8)$
 - LECs from $\mathcal{L}_{\phi B}^{(4)}: d_k, \ k \in (1, \cdots, 7)$

Feynman diagrams up to N³LO

 $\begin{array}{ll} \text{Vertex:} & \text{Boxes} - \mathcal{L}_{\phi B}^{(2)}, & \text{Diamonds} - \mathcal{L}_{\phi B}^{(4)}, & \text{Solid dot} - \mathcal{L}_{\phi B}^{(1)}, & \text{circle-cross} - \mathcal{L}_{\phi B}^{(2)}, \end{array} \end{array}$

Octet baryon masses in infinite time-space

- Calculate baryon self-energy using dimensional regularization (MS)
- Subtract PCB terms with EOMS scheme

$$m_B^{\text{Inf.}} = m_0 + m_B^{(2)}(M_\phi) + m_B^{(3)}(M_\phi) + m_B^{(4)}(M_\phi)$$

Lattice Finite-Volume Corrections

□ Physical picture of FVCs

• Momentum of virtual particle discretized

$$k_i = \frac{2\pi}{L} \cdot n_i, \quad (i = 0, 1, 2, 3) \implies \int_{-\infty}^{\infty} dk \sim \sum_{n = -\infty}^{\infty} \frac{2\pi}{L} \cdot n$$

Definition of FVCs:

$$\Delta H_{\rm FVC}^{(b)} = \int \frac{dk_0}{2\pi} \cdot \left(\frac{1}{L^3} \sum_{\vec{k}} \Box - \int \frac{d\vec{k}}{(2\pi)^3} \Box \right) \qquad {\rm with} \ {\rm L}_{\rm time} \sim 5 {\rm L}_{\rm space}.$$

Continuum extrapolation of LQCD

In principle, continuum extrapolation should be firstly performed

- LQCD: makes a statement about the underlying fundamental continuum theory
- **BChPT**: describes the continuum QCD and is not valid for $a \neq 0$
- But, the most LQCD and BChPT studies
 - Discretizsation effects of LQCD are assumed small, always taken as systematic error or neglected

Discretization effects should be studied in BChPT

• Use Symanzik effective action K.Symanzik, NPB(1983)

$$S_{\text{eff}} = S_0^{\text{QCD}} + aS_1 + a^2S_2 + \cdots$$

- Construct effective Lagrangians up to $\mathcal{O}(a^2)$

$$\mathcal{L}_{a}^{\text{eff}} = \mathcal{L}^{\mathcal{O}(a)} + \mathcal{L}^{\mathcal{O}(am_{q})} + \mathcal{L}^{\mathcal{O}(a^{2})}.$$

Calculate discretization effects of LQCD with the Wilson fermion

$$m_B^{(a)} = m_B^{\mathcal{O}(a)} + m_B^{\mathcal{O}(am_q)} + m_B^{\mathcal{O}(a^2)}.$$

Octet baryon masses for LQCD

Numerical Details

□ Fitting data: LQCD results (11-sets) + Exp. values

- PACS-CS, LHPC, QCDSF-UKQCD, HSC, NPLQCD
 - Lattice data with $M_{\pi} < 500$ MeV

reduce the higher order contributions of chiral expansions

• Lattice data with $M_{\phi}L > 4$

minimize finite-volume effects of LOCD

Fitting points: 44(LQCD) + 4(Exp.) = 48

Results and Discussion

Octet baryon masses in EOMS BChPT

Assuming: virtual decuplet effects can be absorbed by LECs.

Fitting methods

	Fitting formula	Free parameters	
NLO	$m_0 + m_B^{(2)}$	m_0 , b_0 , b_D , b_F	4
NNLO	$m_0 + m_B^{(2)} + m_B^{(3)}$	m_0 , b_0 , b_D , b_F	4
N ³ LO	$m_0 + m_B^{(2)} + m_B^{(3)} + m_B^{(4)}$	m_0 , b_0 , b_D , b_F , b_i , d_j	19

Other parameters

- $L^r_{4,5,6,7,8}$, J. Bijnens et al., NPB(2012), with $\mu=1~{
 m GeV}$
- $F_0 = 0.0871 \; {
 m GeV}$, G. Amoros et al., NPB(2001)
- D = 0.80, F = 0.46

Best fitting results

	NLO	NNLO	N ³ LO
m_0 [MeV]	900(6)	767(6)	880(22)
b_0 [GeV $^{-1}$]	-0.273(6)	-0.886(5)	-0.609(19)
b_D [GeV $^{-1}$]	0.0506(17)	0.0482(17)	0.225(34)
b_F [GeV $^{-1}$]	-0.179(1)	-0.514(1)	-0.404(27)
b_1 [GeV $^{-1}$]			0.550(44)
b_2 [GeV $^{-1}$]			-0.706(99)
b_3 [GeV $^{-1}$]			-0.674(115)
b_4 [GeV $^{-1}$]			-0.843(81)
b_5 [GeV $^{-2}$]			-0.555(144)
$b_{6} [\text{GeV}^{-2}]$			0.160(95)
$b_7 [\text{GeV}^{-2}]$			1.98(18)
b_8 [GeV $^{-2}$]			0.473(65)
d_1 [GeV $^{-3}$]			0.0340(143)
d_2 [GeV $^{-3}$]			0.296(53)
d_3 [GeV $^{-3}$]			0.0431(304)
d_4 [GeV $^{-3}$]			0.234(67)
$d_5~[{ m GeV}^{-3}]$			-0.328(60)
d_7 [GeV $^{-3}$]			-0.0358(269)
d_8 [GeV $^{-3}$]			-0.107(32)
χ^2 /d.o.f.	11.8	8.6	1.0

 EOMS-BChPT shows a clear improvement order by order

- Different lattice QCD calculations are consistent with each other
- Values of LECs from EOMS-N³LO look very natural
- m₀ = 880 MeV consistent with the SU(2)-BChPT results.
 M. Procura et al., PRD(2003,2006)
 L. Alvarez-Ruso et al., PRD(2013)
- Neglecting finite-volume corrections would lead to $\chi^2/d.o.f. = 1.9.$

Table: Values of the LECs.

X.-L. Ren (Beihang U. & IPN)

Chiral extrapolation

- NLO fitting linear and can not describe the experimental value
- NNLO fitting more curved and can not well describe lattice data
- N³LO fitting can give a good description of LQCD and Exp. data, confirm the linear dependence of the lattice data on M_{π}^2

X.-L. Ren (Beihang U. & IPN)

EOMS-N³LO

Up to now ...

Multi-extrapolation of LQCD

• Including FVCs and discretization effects self-consistently in the octet baryon masses

$$m_B = m_0 + m_B^{(2)} + m_B^{(3)} + m_B^{(4)} + m_B^{(a)}$$

- 19 LECs + 4 new LECs (related to lattice spacing)
- Fitting the LQCD results obtained with $\mathcal{O}(a)$ -improved Wilson action
 - 10 sets: PACS-CS, QCDSF-UKQCD, HSC, NPLQCD

Evolution of discretization effects with a and m_π

- Discretization effects on baryon masses do not exceed 2% for a = 0.15 fm
- Consistent with early LQCD studies S. Durr et al., Phys. Rev. D79, (2009) 014501.
- Up to $\mathcal{O}(a^2)$, discretization effects are small and can be safely ignored

X.-L. Ren (Beihang U. & IPN)

EOMS-N³LO

Pion- and strangness-octet baryon sigma terms

Nucleon-sigma term

- Related to chiral quark condensate $\langle \bar{q}q \rangle$
- Understand the composition of the nucleon
- Key input for direct dark matter searches
- Strangeness-nucleon sigma term: $0\sim 300$ MeV

Feynman-Hellmann Theorem

$$\sigma_{\pi B} = m_l \langle B(p) | \bar{u}u + \bar{d}d | B(p) \rangle \equiv m_l \frac{\partial m_B}{\partial m_l},$$

$$\sigma_{sB} = m_s \langle B(p) | \bar{s}s | B(p) \rangle \equiv m_s \frac{\partial m_B}{\partial m_s}.$$

Three key factors to accurately predict baryon sigma terms

- Effects of lattice scale setting: mass independent vs. mass dependent
- Strong isospin breaking effects: better constrain the values of LECs
- Chiral expansion truncations: systematic uncertainties of sigma terms

	MIS		MDS
	a fixed	a free	
$\sigma_{\pi N}$	55(1)(4)	54(1)	51(2)
$\sigma_{\pi\Lambda}$	32(1)(2)	32(1)	30(2)
$\sigma_{\pi\Sigma}$	34(1)(3)	33(1)	37(2)
$\sigma_{\pi\Xi}$	16(1)(2)	18(2)	15(3)
σ_{sN}	27(27)(4)	23(19)	26(21)
$\sigma_{s\Lambda}$	185(24)(17)	192(15)	168(14)
$\sigma_{s\Sigma}$	210(26)(42)	216(16)	252(15)
$\sigma_{s\Xi}$	333(25)(13)	346(15)	340(13)

 All three scale setting methods yield similar baryon sigma terms.

σ_{sN} : comparison with earlier studies

Summary

- We have systematically studied the LQCD octet baryon masses with the EOMS BChPT up to N³LO
- Finite-volume and disretization effects on the lattice data are taken into account self-consistently
- **D** Through simultaneously fitting "all" the current LQCD data:
 - Covariant BChPT shows a clear improvement order by order
 - LQCD results are consistent with each other, though their setups are quite different
 - IF Up to $\mathcal{O}(a^2)$, the discretization effects on the LQCD baryon masses are shown to be small and can be safely ignored

□ An accurate determination of the octet baryon sigma terms via the Feynman-Hellmann theorem.

Thank you!