Microscopic description of fission dynamics: toward a 3D resolution of the time dependent GCM+GOA equation

D. Regnier^{1,}, N. Dubray¹, N. Schunck², M. Verrière¹

¹CEA, DAM, DIF, 91297 Arpajon, France

²Nuclear and Chemical Science Division, LLNL, Livermore, CA 94551, USA

June 23th, 2016

DAM/NNSA project - Dynamics of neutron-induced fission

Start: December 2013

Context

- Build a predictive theory of fission for national security applications
- Use a microscopic approach based on our best knowledge of nuclear forces and quantum many-body methods
- Leverage leadership computing facilities (e.g. the NNSA/ASCR campaigns)

Objectives

- Deliver a computational framework to predict fission fragment yields
 - Co-developed and shared between CEA and NNSA/ASCR
 - Scalable to next generation of supercomputers
- Quantify theoretical uncertainties
 - Control numerical errors
 - Estimate sensitivity to model parameters
 - Explore systematic uncertainties

Table of contents

State-of-the art in 2013

Time Dependent Generator Coordinate Method (TDGCM)

A fully quantum-mechanical description of time evolution

- Gives distribution of probability for the nucleus to have a given shape at time *t*
- Quantum analog to Kramers equation in classical transport theory

One of the collective variables:

- elongation (Q_{20} in b),
- mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Oefine initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

One of the collective variables:

- elongation (Q₂₀ in b),
- mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Oefine initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

One of the collective variables:

- elongation (Q₂₀ in b),
- mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Oefine initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

- elongation (Q₂₀ in b),
- mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Oefine initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

Figure 2 : Pre-neutron mass yields for n_{th} + ²³⁹Pu. Black: experimental data from Schillebeeckx *et al.*(1992).

Red: Microscopic calculation from Younes *et al.*(2012).

2005: First calculation for 238 U (n,f) H. Goutte *et al.*, Phys. Rev. C **71**, 024316

2012: Study of ²³⁶U and ²⁴⁰Pu W. Younes *et al.*, LLNL-TR-586678

Results:

- \simeq 30% agreement between experiment and theory
- No estimation of uncertainty

Code: tdgcm2d

- Developed and used at CEA and LLNL over last decade
- 2 collective coordinates
- Finite differences, rectangular domain, regular grid

Table of contents

Results for ²⁴⁰Pu and ²³⁶U fissions

FELIX: a new solver for the TD-GCM+GOA Requirements:

- Capable of handling N>2 collective variables for better fidelity
- Full control of numerical precision
- Scalable numerical methods

Numerical methods:

- Finite Element Method (space)
- QMR (sparse matrix inversions)
- Krylov propagation time scheme
- Spectral finite elements

Validation

- Unitary tests
- Analytical benchmarks

Results

Figure 3 : h-refined mesh of a two-dimensional potential energy surface in ²⁴⁰Pu.

- D. Regnier et al., Comput. Phys. Commun. 122, 350-363 (2016)
- FELIX-1.0 released under Open Source GPL-2 license

Pre-emission mass yields for n_{th} +²³⁹Pu fission

Results from FELIX are convoluted with a Gaussian to account for different sources of fluctuations ($\sigma = 4$).

Sensitivity analysis

List of the inputs:

- Form and parameters of the nucleon-nucleon effective interaction
 - \rightarrow Potential Energy Surface (PES)
- Choice and number of the collective variables
- Definition of the initial state for the time evolution
- Convolution of the raw flux

Figure 4 : Variation of the heavy fragments yields for a range of convolution width ($\sigma \in [2, 6]$)

- The qualitative asymetric picture of the the ²⁴⁰Pu fission is robust
- A better modeling of several physics effects (initial state, fragment separation) is necessary to reach quantitative predictions.

Exploration of other fissioning systems

- Is this approach capable of reproducing the yields of various fissioning systems ?
- Is it able to predict a transition from symetric to asymetric fission ?

Series of calculations in progress: $^{236}\text{U},^{256}\text{Fm},\,^{258}\text{Fm},\,^{260}\text{Fm},\,^{226}\text{Th},^{180}\text{Hg}$

Figure 5 : Pre-emission mass yields for $n_{th}+^{235}U$ fission. Results are convoluted with a Gaussian ($\sigma = 4$).

Toward a 3D description

Low dimension \rightarrow discontinuities issue^a

- Discontinuities appear in a PES when its dimension is too low to capture the full deformation space topography.
- A dynamic description based on a discontinuous PES is missing a part of the physics (wrong barriers, missing fragmentations ...).
- a: N. Dubray et al., Comput. Phys. Commun. 183, 2035 (2012)

 $\begin{array}{l} \mbox{Figure 6}: \mbox{ Potential energy surface for a $n+^{239}$Pu fission in the collective space ($\hat{Q}_{20}, $\hat{Q}_{30}, \hat{Q}_{40}). \end{array}$

The first 3D dynamics calculations for a n + 239 Pu are on progress...

Table of contents

Results for ²⁴⁰Pu and ²³⁶U fissions

Outlook

Results

- Deliver a computational framework to predict fission fragment yields
- Fragments yields for a ²⁴⁰Pu fission

Short-term perspectives

- Investigate a variety of fissioning system
- Estimate the benefits of a 3D collective space

Next challenges

- Predict the dynamics through scission
- Step beyond the GOA
- Step beyond the adiabatic approximation

Thank you for your attention !

Related publications:

- N. Dubray *et al.*, Comput. Phys. Commun. **183**, 2035 (2012)
- D. Regnier *et al.*, Comput. Phys. Commun. **122**, 350-363 (2016)
- D. Regnier et al., Phys. Rev. C 93, 054611 (2016)
- D. Regnier et al., EPJ Web of Conf. 111, 08005 (2016)

FELIX