

Università degli Studi di Padova

Nuclear radii, Neutron skins, and Halo orbits

<u>J. Bonnard¹, S. M. Lenzi^{1,2}, A. P. Zuker^{2,3}</u>

¹ INFN, Sezione di Padova
 ² Università degli Studi di Padova
 ³ Université de Strasbourg, IPHC

Introduction

<u>Thomas-Ehrman Shift (TES)</u> Proton $1s_{1/2}$ orbit in ¹³N depressed by ~750 keV compared to the neutron one in ¹³C

Ehrman, *Phys. Rev.* 81, 412 (1951) Thomas, *Phys. Rev.* 88, 1109 (1952)

Overbinding of orbits with respect to naive expectations

Nolen-Schiffer Anomaly (NSA) Closed-shell core unperturbed by the the addition of a particle → Severe underestimate of MDE Nolen & Schiffer, PLB. 29, 396 (1968) Ann. Rev. Nucl. Sci. 19, 471 (1969)

MDE(A = 41) (MeV)							
exp	IBI	Coul s	sch-Coul				
7.278	6.683	6.679	6.675				

$$\sqrt{\left\langle r_{\pi}^{2}\right\rangle} = \rho_{\pi} = A^{1/3} \left[\frac{\rho_{0}}{2} - \frac{\zeta}{2} \frac{t}{A^{4/3}} - \frac{\upsilon}{2} \left(\frac{t}{A}\right)^{2} \right] e^{g/A} + \lambda \left[\frac{z(D_{\pi} - z)}{D_{\pi}^{2}} \times \frac{n(D_{\nu} - n)}{D_{\nu}^{2}} \right] A^{-1/3}$$

Duflo & Zuker, PRC 66, 051304 (2002)

"Naive" term

- t = N Z isospin
- $\rho_0 > 0$ standard (scalar)
- $\zeta > 0$ neutron skin (vector) fixed
- v > 0 uniform contraction (tensor)
- e^{g/A} overall correction (phenomenological)

"Correlated" term

z, *n* proton, neutron occupations of the valence Extruder-Intruder shells

$$pf \left\{ \begin{array}{c} \hline 0g_{9/2} \\ 1p_{1/2} \\ 0f_{5/2} \\ 1p_{3/2} \\ 0f_{7/2} \\ 0f_{7/2} \\ sd \left\{ \begin{array}{c} \hline 0d_{3/2} \\ 0d_{3/2} \\ 1s_{1/2} \\ 0d_{5/2} \\ 0d_{5/2} \\ s \\ \end{array} \right\} N, Z = 28, D_{\nu,\pi} = 14$$

$$N, Z = 28, D_{\nu,\pi} = 14$$

$$N, Z = 14, D_{\nu,\pi} = 8$$

$$P \left\{ \begin{array}{c} \hline 0p_{1/2} \\ 0p_{3/2} \\ 0p_{3/2} \\ \end{array} \right\} N, Z = 6, D_{\nu,\pi} = 6$$

$$\sqrt{\left\langle r_{\pi}^{2}\right\rangle} = \rho_{\pi} = A^{1/3} \left[\frac{\rho_{0}}{2} - \frac{\zeta}{2} \frac{t}{A^{4/3}} - \frac{\upsilon}{2} \left(\frac{t}{A}\right)^{2} \right] e^{g/A} + \lambda \left[\frac{z(D_{\pi} - z)}{D_{\pi}^{2}} \times \frac{n(D_{\nu} - n)}{D_{\nu}^{2}} \right] A^{-1/3}$$

Open problem: Abrupt raise at N = 28?

No existing calculation explains the observed radii

*Kreim et al., PLB 731, 97 (2014) Garcia Ruiz et al., Nature Physics (2016) † Heylen et al., in preparation

No existing calculation explains the observed radii

A

Filling of <u>huge</u> p_{3/2} orbits

Bonnard, Lenzi, Zuker, PRL 113, 212501 (2016)

*Kreim et al., PLB 731, 97 (2014) Garcìa Ruiz et al., Nature Physics (2016) † Heylen et al., in preparation

 (fm)

Similar results obtained for the Mn isotopic chain recently measured[†]

Neutron skin

Isospin conservation implies: Proton rms radius of a Z > N nucleus equals the neutron rms radius of its N > Z mirror

$$\Delta r_{\nu\pi} = \rho_{\nu} - \rho_{\pi} = \frac{\zeta t}{A} \,\mathrm{e}^{g/A}$$

	⁴⁸ Ca	⁶⁸ Ni	¹²⁰ Sn	²⁰⁸ Pb	¹²⁸ Pb
$DZ(\zeta = 0.8 \text{ fm})$	0.14	0.14	0.13	0.17	0.17
	0.135(15)	0.17(2)	0.14(2)	0.16(3)	0.15(3)
Estimates	ab initio	$\alpha_{\scriptscriptstyle D}$	α_{D}	α_{D}	exp
Nat	Hagen <i>et al.,</i> :. <i>Phys.</i> 12 186 (201	16) PR	Roc-Maza <i>et al.</i> , C 92 064304 (20	,)15) PRL	Tarbet <i>et al.</i> , , 112, 242502 (2014)

DZ skins also squares well with Gogny D1S* and Skyrme Sly4[†] results

*Berger, Girod, Cogny, Comp. Phys. Comm. 63, 365 (1991) [†] Chabanat *et al., NPA* 365, 231 (2010)

Isovector monopole polarizability

Zuker, Czech. J. Phys. B 25, 311 (1975) The extra particle polarizes the system by inducing particlehole jumps from the core

 $\hat{H} = \hat{h} + \hat{H}_0 + \hat{H}_1$

- \hat{h} unperturbed system
- \hat{H}_0 isoscalar: overall increase
- \hat{H}_1 isovector: differential contraction-dilation of the fluids

Isovector monopole polarizability

Zuker, Czech. J. Phys. B 25, 311 (1975) The extra particle polarizes the system by inducing particlehole jumps from the core

 $\hat{H} = \hat{h} + \hat{H}_0 + \hat{H}_1$

- \hat{h} unperturbed system
- \hat{H}_0 isoscalar: overall increase
- \hat{H}_1 isovector: differential contraction-dilation of the fluids

Approximate solution:

The NSA disappears as the proton and neutron radii tends to equalize

 $\hbar\omega_{\nu} > \hbar\omega_{\pi}$

Strategy

 $0\hbar\omega$ no-core shell model with V_{low-k} potentials from chiral N3LO interaction that incorporates all isospin-breaking effects

Isovector monopole polarizability: Calculations with different $\hbar \omega$ for protons and neutrons

$$\hbar\omega_{\pi} = \frac{41.47}{\langle r_{\pi}^2 \rangle} \sum_{i} z_i (p_i + 3/2)/Z$$
$$\hbar\omega_{\nu} = \frac{41.47}{\langle r_{\nu}^2 \rangle} \sum_{i} n_i (p_i + 3/2)/N$$

Values interchanged for the mirror

The DZ fit does not depend on ζ

Skin parameters ζ adjusted to reproduce the experimental energy differences

Results

Single-particle/hole states built on ¹⁶O and ⁴⁰Ca

A = 15 $\hbar\omega_{\pi} > \hbar\omega_{\nu}$ rules out an isovector polarization mechanism

 $\begin{array}{l} A=17\\ \bullet \ \textit{A reasonable } \zeta \ \textit{solves}\\ \textit{the NSA for } \textit{d}_{5/2}\\ \bullet \ \textit{s}_{1/2} \ \textit{very large: } \underline{at \ least}\\ \textit{1.2 fm larger than } \textit{d}_{5/2} \end{array}$

A = 39No longer huge but keep memory of halo status

A = 41• A reasonable ζ solves the NSA for $f_{7/2}$ • Same ζ for $f_{5/2}$ • Same ζ for p: at least 0.7 fm larger than f • Orbits of same l have the same behavior

Radii in the sd shell: Microscopic model

$$\rho_{\pi} = \frac{41.47}{\hbar\omega} \sum_{i} m_i (p_i + 3/2 + \frac{\delta_i}{\delta_i}) / A$$

- Isospin representation \implies sum over protons and neutrons, t dependence through $\hbar\omega$
- $\hbar \omega$ from correlated DZ with $\lambda = 0 \implies$ definite positive fluctuations

Radii in the sd shell: Microscopic model

$$\rho_{\pi} = \frac{41.47}{\hbar\omega} \sum_{i} m_i (p_i + 3/2 + \frac{\delta_i}{\delta_i}) / A$$

- Isospin representation \implies sum over protons and neutrons, t dependence through $\hbar\omega$
- $\hbar\omega$ from correlated DZ with $\lambda = 0 \implies$ definite positive fluctuations
- $\delta_{d_{5/2}} = \delta_{d_{3/2}} = 0 \implies s_{1/2}$ orbit solely responsible for the fluctuations
- Total occupations m_i from shell model calculations
- Two effective interactions: USDa (scale as $A^{-1/3}$) Brown & Richter PRC 74, 034315 (2014)

- Monopole corrected interaction (MCI)

Radii in the sd shell: Microscopic model

$$\rho_{\pi} = \frac{41.47}{\hbar\omega} \sum_{i} m_i (p_i + 3/2 + \frac{\delta_i}{\delta_i}) / A$$

- Isospin representation \implies sum over protons and neutrons, t dependence through $\hbar\omega$
- $\hbar\omega$ from correlated DZ with $\lambda = 0 \implies$ definite positive fluctuations
- $\delta_{d_{5/2}} = \delta_{d_{3/2}} = 0 \implies s_{1/2}$ orbit solely responsible for the fluctuations
- Total occupations m_i from shell model calculations
- Two effective interactions: USDa (scale as $A^{-1/3}$) Brown & Richter PRC 74, 034315 (2014)

- Monopole corrected interaction (MCI)

Ontimal on	olution -		
$\int \delta_{<}$ if N and $Z < 14$	_	USDa	MCI
$o_{s_{1/2}} = \begin{cases} \delta_{>} & \text{if } N \text{ or } Z \ge 14 \end{cases}$	$\delta_{<}(\mathrm{fm})$	4.90	4.25
14 is an EI magic number	$\delta_>$ (fm)	1.40	1.35

Results

Bonnard & Zuker, nucl-th/1606.03345

Similar results (even better) with AM radii

 $ho_{\pi} \, ({
m fm})$

Conclusions

<u>Summary</u>

- First reproduction of the observed isotope shifts in K and Ca via DZ
- Old problems under new guises: NSA as neutron skins, TES as halo orbits
- $s_{1/2}$ and $p_{3/2,1/2}$ orbits in the ¹⁷O and ⁴¹Ca respectively are huge
- Microscopic model reproduce well radii throughout the sd shell
- Unexpected behavior: The size of $s_{1/2}$ drops abruptly at the EI closure (N, Z = 14), but remains large (~1.6 to ~0.6 fm bigger than its d counterparts)

<u>Open problems</u>

- Can this surprising behavior be derived from ab initio calculations?
- Could it not be that the unexplained EI magic numbers are not associated to selfbinding of the orbits with largest j within a major HO shell (due to 3B forces) but instead to unbinding of halo orbits above?

Perspectives

- Calculations of MDE and MED in the sd shell
- Applications to the pf shell

Università degli Studi di Padova

Thank you for your attention

Assemblée Générale des Théoriciens de Physique Nucléaire 23 juin 2016, IPN d'Orsay